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Single nucleotide polymorphisms (SNPs) contribute most of the genetic variation to the human genome. SNPs associate with many
complex and common diseases like Alzheimer’s disease (AD). Discovering SNP biomarkers at different loci can improve early
diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing
interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in
whole genome sequencing (WGS) data for detecting the causal ADSNPs and gene-SNP interactions.We focused on polymorphisms
in the top ten genes associated with AD and identified by genome-wide association (GWA) studies. New SNP biomarkers were
observed to be significantly associated with Alzheimer’s disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429,
rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal
SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong
association with AD disease and achieves better performance than both näıve Bayes and tree augmented näıve Bayes. Minimal
augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in näıve Bayes,
respectively.

1. Introduction

One of the important study subjects about human genome
is the investigation of genetic variants related to complex
diseases. Most of these genome-wide association (GWA)
studies [1] are aimed to determine genetic variants possibly
related to complex diseases [2, 3]. Genetic variants mostly
consist of single nucleotide polymorphisms (SNPs), and
human genome is estimated to include around 10 million
SNPs [4].

A SNP is a single nucleotide site where exactly two (of
four) different nucleotides occur in a large percentage of the
population. SNPs can contribute to complex disorders in two
different ways, either by changing the structure of a specific
protein or by changing the abundance of the protein [5].
This is known as the functionality of the SNPs. Genotyping
millions of SNPs is highly expensive. For this reason, it is
required to obtain a suitable subset of SNPs to accurately
represent the rest of SNPs.

A genetic association study aims to find statistical associ-
ations between genotypes (genetic variants) and phenotypes
(traits or disease states) and thus to identify genetic risk fac-
tors [6]. Studies of cases and controls in unrelated individuals
are the most commonly used approach for assessing genetic
associations of complex diseases since sufficiently large study
populations can be easily assembled without the need to
enroll also family members of the recruited participants [3].

Alzheimer’s disease (AD) is a brain disease identified by
slowly progressing memory failure, confusion, poor judg-
ment, and, ultimately, death [7]. It is the most common form
of dementia associated with aging. There are two forms of
AD, called familial AD and sporadic AD. The rarer form
is early-onset familial AD, which typically starts before 65
years of age. The genetic basis of early-onset AD is well
proved, and it shows an autosomal dominant inheritance
pattern. Most familial cases of AD are accounted for by
mutations in one of three genes (amyloid precursor protein
gene, presenilin 1, or presenilin 2). Sporadic AD, also called
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late-onset AD (LOAD), is the commoner form of AD,
accounting for approximately 95% of all AD cases. The onset
of LOAD symptoms typically occurs after 65 years of age.
LOAD has a heritable component but has a more genetically
complex mechanism than familial AD [8]. In the past several
years, GWASs have identified more than six hundred genes
as susceptibility factors, available in AlzGene database. The
apolipoprotein E (APOE) gene has been considered as the
strongest consistently replicated genetic risk factor for LOAD.

Bayesian learning is a successful method to learn the
structure of data in different applications. Here are some
reasons why we choose Bayesianmethods. Bayesianmethods
provide several structure learning algorithms. They provide
models of causal influence and allow us to explore causal
relationships, perform explanatory analysis, and make pre-
dictions. Finally, Bayesian networks provide away to visualize
results. As an alternative, machine learning methods, such as
Random Forest (RF), have identified potential causal variants
on risk for complex diseases like AD [9–11]. However RF
obtained poor results in the ADNI genotype dataset. Label
propagation (LP) is used to rank SNPs in genome-wide data
[12]. When it has been applied to LOAD it performed better
than the three control methods in ranking LOAD SNPs.
Many studies tried to improve the accuracy of AD diagnosis
over the last years [13]. They monitored AD progression and
treatment effects using a number of genetic, biochemical [14],
and imaging measures [15]. As of yet, none of them has been
considered as an ideal AD biomarker. Due to the complexity
of AD, other studies combined two or three of these different
biomarkers for higher diagnostic accuracy.

Recent studies have been attempted to correlate high-
throughput single nucleotide polymorphism (SNP) data with
large-scale imaging data [16] or cerebrospinal fluid (CSF)
protein levels. Multimodal study combined magnetic reso-
nance imaging (MRI), fluorodeoxyglucose positron emission
tomography (FDG-PET) modalities, and CSF biomarker
into a multikernel SVM for classifying Alzheimer versus
normal samples with high accuracy [17]. Another study [18]
added APOE data to the previous markers (structural MRI,
FDG-PET, and CSF) to classify Mild Cognitive Impairment-
(MCI-) stable and MCI-converter patients using Gaussian
process (GP) classification and SVM. Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database collected and ana-
lyzed thousands of brain images, genetic profiles, blood
biomarkers, and cerebrospinal fluid biomarkers that are
utilized to measure the disease progress or the treatment
effects [19].

Many genes have been linked to the disorder. However,
only a minority of them are supported by a sufficient level of
evidence. Among all SNPs, only SNPs, belonging to the top 10
AD candidate genes listed on the AlzGene database [20] as of
April 14, 2011, were selected after the standard quality control
(QC) and imputation steps. Our goal was to identify the
subset of SNPs strongly associated with Alzheimer’s diseases,
from the top ranked susceptibility genes, using different
supervised learning Bayesian networks structure methods.

The paper is organized as follows. Section 2 presents
the dataset used in this study, introduces Bayesian network,
describes four different supervised BN structural learning

algorithms, and explores the proposed system. Section 3
combines the results of each model and compares them.
Finally, Section 4 presents our conclusions.

2. Material and Methods

Our goal was to apply Bayesian network structure learning
(BNSL) to detect Alzheimer’s disease potential causal SNPs.
Furthermore, identifying SNPs interacted with causal SNPs
in addition to the causal SNPs themselves [21].

The main stages of the proposed system are described in
the workflow shown in Figure 1. Start with the whole genome
sequencing data, then extract polymorphisms in the top ten
genes associated with AD (feature selection), apply quality
control based filteringwith PLINK, impute themissing values
using ExpectationMaximization algorithm, use four different
Bayesian network structure learning algorithms to get the
most associated SNPs with AD, and finally validate the
performance of these four BN structures using 10-fold cross
validation to reach AD biomarkers.

2.1. Datasets. Whole genome sequencing (WGS) data
of 812 individuals were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (As such, the
investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at
http://adni.loni.usc.edu/wp-content/uploads/how to apply/
ADNI Acknowledgement List.pdf) database. Data used
in the preparation of this paper were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu/).TheADNI was launched
in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET),
and other biological markers can be combined for early
prediction of Alzheimer’s disease (AD).

The used subset of the ADNI data includes 282 controls,
442 MCI, and 48 AD as the baseline diagnosis. We selected
SNPs belonging to the top ten AD candidate genes listed
on the AlzGene database using PLINK program. The total
SNP-genotype fields are 496 single SNPs. Table 1 summarized
the top candidate genes used in this study and their identi-
fications: gene name, chromosome number, the number of
SNPs among the genes, and their potential pathways [22].
In general, these genes contribute to at least one of three
pathways (inflammatory response, endocytosis, and lipid
metabolism) all of which have been proposed to play some
role in Alzheimer’s disease [23].

An initial quality control based filtering with PLINK [24]
has been applied for the selected datasets. Firstly individuals
with too much missing genotype data (10% missing) and
SNPs with a 10% missing genotyping rate (these are the
default values) have been excluded.

Subsequently SNPs whose minor allele frequency is less
than 0.01 and whose Hardy-Weinberg 𝑝 value is less than
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Whole genome sequencing (WGS) data (ADNI)
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among top candidate genes)
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Figure 1: Summary of the proposed system.

Table 1: The top candidate genes and the number of SNPs among each gene.

Gene Chromosome Number of SNPs Potential pathways
APOE 19 6 Cholesterol/lipid metabolism
BIN1 2 101 Endocytic pathways
CLU 8 32 Immune and cholesterol/lipid metabolism
ABCA7 19 36 Cholesterol/lipid metabolism; immune and complement systems/inflammatory response
CR1 1 71 Immune and complement systems/inflammatory response
PICALM 11 138 Endocytic pathways
MS4A6A 11 12 Immune and complement systems/inflammatory response
CD33 19 13 Immune and complement systems/inflammatory response
CD2AP 6 61 Endocytic pathways; immune and complement systems/inflammatory response

0.001 (the default values in versions prior to 1.04) have been
also excluded [25].

Whole genome sequencing (WGS) data used in this study
have been gathered from 812 ADNI participants between
normal, MCI, and AD. So the phenotype data for the par-
ticular patient and this information have been matched with
genotype information.Weused the phenotype representation
of 1 and 2 for normal and AD groups, respectively, according
to the baseline exam.

2.2. Bayesian Networks. This section explores the Bayesian
network approach and its applicability to understand the
genetic basis of disease. Bayesian networks are a type of
probabilistic graphical models (PGMs) that can represent the
conditional dependencies and independencies between a set
of randomvariables via aDirectedAcyclicGraph (DAG) [26].

ABN is defined by twomodels, structural𝐺 and paramet-
ric models Θ, where the structural model 𝐺 of BN has been
recognized by nodes 𝑋
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Most often, the structure and the parameters of Bayesian
network are not known a priori and hence need to be
learned from data which is called Bayesian network structure
learning (BNSL). BNSLhas been used in genetic data analysis,
classification of disease, andmany other areas of biology [28].
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Genome-wide association studies (GWASs) aim to iden-
tify gene-SNPs involved in human disease or may contribute
as a risk factor for developing a complex disease. In order
to understand how gene networks contribute to a certain
disease, Bayesian networks have been used to represent
the relationship between genetic variants and a phenotype
(disease status).

The following subsections present different classification
algorithms supported by BayesiaLab [29], ordered by their
structural complexity. The structural complexity is related
to the type and number of dependencies allowed between
variables. Four types of structures are presented: naı̈ve Bayes
(NB), tree augmented Bayes (TAB), Markov blanket (MB),
and minimal augmented Markov blanket (MAMB).

2.2.1. Naı̈ve Bayes Structure (NB). The least complex struc-
ture is the näıve Bayes structure (NB structure), which
supposes that predictor variables are conditionally indepen-
dent given the class. It means ignoring interactions between
attributes within individuals of the same class. In naı̈ve Bayes
structure all variables are children of the target variable. A
Bayesian classifier structure has been created from training
data, but this typically requires the probabilities for each vari-
able node given the class variable and the prior probabilities
of the class [30].

2.2.2. Tree Augmented Naı̈ve Bayes (TANB). The augmented
näıve Bayesian algorithm begins with an NB structure but
relaxes the conditional independence assumption between
the child variables. After creating the standard NB structure,
a greedy search algorithm has been used to find connections
between the child nodes. In tree augmented näıve Bayes
(TANB) structure the class variable has no parents and each
variable node has atmost two parents, one of them is the class
variable [30].

2.2.3. Markov Blanket (MB). It is an algorithm that searches
the nodes belonging to the Markov blanket of the target
node, that is, fathers, sons, and spouses. The knowledge of
the values of each node of this subset of nodes makes the
target node independent of all the other nodes. The search
of this structure, which is entirely focused on the target node,
makes it possible to obtain the subset of the nodes that are
really useful much more quickly than other algorithms like
näıve Bayesian. Furthermore, this method is a very powerful
selection algorithm and is the ideal tool for the analysis of a
variable [31].

2.2.4. Minimal Augmented Markov Blanket (MAMB). Min-
imal augmented Markov blanket starts with the Markov
blanket structure and then uses an unsupervised search to
find the probabilistic relations between each of the variables
belonging to theMarkov blanket.MAMB allows reducing the
set of nodes, and it results then in a more accurate target
analysis [32].

3. Results and Discussion

Bayesian network structural learning has been used to estab-
lish a causal relationship or dependency between SNPs in
the network and to identify the most efficient path towards
AD diagnosis. We introduced a framework for comparing
different Bayesian network algorithms to achieve the highest
performance improvements. We randomly selected 20% of
the dataset as Test Set and consequently the remaining
80% served as our Learning Set. Expectation Maximization
algorithm has been used to handle missing values in BN
learning. It is an iterative method in which it uses other
variables to guess a value (Expectation) and then checks
whether that value is themost likely (Maximization). If not, it
reguesses more likely values. This repeats until it reaches the
most likely value [33]. Although the percentage of themissing
data in this study is very small (0.28%), it is better to use EM
imputation algorithm than to ignore the problem altogether.

3.1. Model Complexity. We have managed network complex-
ity via the Structural Coefficient (SC) parameter. Various
experiments for different range values of SC were carried
out to find relationships/links between the variables. These
experiments indicated that choosing SC value to be 0.25 for
MB and MAMB worked much faster and found significant
relationships between the variables.

3.2. Network Learning. We have applied four different
supervised algorithms (näıve Bayes, tree augmented näıve
Bayes, Markov blanket and minimal augmented Markov
blanket) to predict the state of the diagnostic variable, that
is, normal or AD. The four resulting Bayesian networks for
the classification were shown in Figures 2 and 3, showing
both the target node and the predictor SNPs. In the naı̈ve
Bayes classifier all variables are included in the model,
so the classifier structure is given a priori: complete NB
structure. The complete NB classifier structure is shown
in Figure 2(a). The accuracy obtained with this classifier
in its discrete version is high in some domains. TANB
starts from a complete NB structure and continues adding
allowed arcs between predictors until the complete TANB
structure is formed as shown in Figure 2(b). On the other
hand MB and MAMB algorithms identified the most
relevant SNPs connected to the disease. The remaining
variables are conditionally independent of affected ones.
Figure 3 shows the network structure of the most relevant
SNPs that are connected to the disease and resulted from
applying Markov blanket and minimal augmented MB
algorithms in Figures 3(a) and 3(b), respectively. The figure
indicates both the target node (base diag) and the predictor
SNPs (like APOE112, kgp21487601, kgp11800793, etc.).
Furthermore, the running time of MB and MAMB is faster
than both NB and TANB for the same dataset. These results
demonstrate the effectiveness of using BN for identifying
AD causal SNPs. Figure 4 shows the top-correlated SNPs
with Alzheimer’s disease. SNPs APOE112, kgp21487601
(rs114506298), kgp11800793 (rs113464261), kgp5536625
(rs9331942), kgp15578484 (rs7530069), kgp11502001
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(a) (b)

Figure 2: (a) Näıve Bayes structure. (b) Tree augmented naı̈ve Bayes structure.
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Figure 3: The network structure of (a) Markov blanket algorithm and (b) minimal augmented Markov blanket.
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Figure 4: Top related SNPs with Alzheimer’ disease using minimal
augmented Markov blanket (SNPs kgp11800793 and kgp5536625
overlapped as they have the same mutual information with AD).

(rs73504429), kgp15238980 (rs76306710), kgp8565253
(rs4732729), kgp2940632 (rs4844609), rs792589, and
rs611267 are common predictors between MB and MAMB.
MB has extra two SNP predictors: rs668134 and rs610932.

SNP APOE112 located in the APOE gene on chromo-
some 19 presents a significant score of association with
AD. SNP APOE112 was the first correlated SNP with AD
that resulted from the four Bayesian models. This result
confirms that APOE is the highest known AD risk factor.
SNP rs769449 located in APOE on chromosome 19 was the
second correlated SNP with AD that resulted from both NB
and TANB, while kgp15578484 (rs7530069) located in CR1
gene on chromosome 1 was the second correlated SNP with
AD that resulted from both MB and MAMB.

Some of the SNPs in our study that were shown to be
associated with AD risk have been previously identified in
other studies like APOE112, rs4844609, rs769449, rs4732729,
rs9331942, rs610932, and rs611267.

Other new SNPs were observed to be significantly
associated with Alzheimer’s disease. These SNPs are
rs7530069, rs113464261, rs114506298, rs73504429, rs7929589,
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Table 2: Prediction accuracy results, sensitivity, and specificity for
various used algorithms.

Algorithm Accuracy Sensitivity Specificity Number of
SNPs

Näıve Bayes 61.58% 59.43% 65.6% 435
Tree augmented
näıve Bayes 64.29% 67.55% 58.16% 435

Markov blanket 65.64% 77.55% 43.26% 13
Minimal augmented
Markov blanket 66.13% 88.87% 16.31% 11

rs76306710, and rs668134. Some other SNPs previously
observed to be associated were tested in our study and were
not significant. The reason that our results did not include
these SNPs was due to an insufficient sample size. Further
studies may be needed in larger populations with larger
numbers of SNPs.

3.3. Model Performance and Evaluation. The overall perfor-
mance can be expressed as the total precision, which is
computed as the total number of correct predictions (true
positives + true negatives) divided by the total number of
cases in the Test Set. Standard accuracy comparisons were
carried out for the four algorithms on all the datasets.
Prediction accuracy results, sensitivity, and specificity are
reported in Table 2.

The table also indicated the number of predictor SNPs
that resulted from each algorithm. For näıve and tree
augmented näıve networks a total of 435 distributed SNPs
out of 496 SNPs were considered as predictors. However,
the number of predictor SNPs reduced to 13 and 11 for
Markov blanket and minimal augmented MB, respectively,
with higher accuracy.

We evaluated the performance of these four BN structures
using 10-fold cross validation. The dataset was randomly
partitioned into ten approximately equal sets such that each
set had a similar proportion of individuals who developed
AD. We applied the algorithms on nine sets taken together
as the training data and evaluated the classifier performance
on the remaining test data. We repeated this process for
each possible test set to obtain an AD prediction for each
individual in the dataset.We used the predictions to compute
the Receiver Operating Characteristic (ROC) curve which is
a widely used measure of classification performance. ROC
graphs allowed a broader comparison of classifiers than
that available from a single-value metric such as accuracy
estimation and may reveal different trends in performance.
Figure 5 represents a comparative ROC curve of the four
resulting network structures. In Figure 5, there is reasonable
correspondence with the results of Table 2. In general, there
is no real difference in performance between any of the classi-
fiers, based on their ROC curves. Tree augmented naı̈ve Bayes
appears better than that of näıve Bayes at false positive rate
greater than 50%, although TAN had the highest accuracy in
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Figure 5: Comparative ROC curve of the four resulting structures.

Table 2. Interestingly, despite the smaller number of predic-
tors inminimal augmentedMarkov blanket, the classification
performance achieves slightly better performance than other
methods.These resultswere expectable, since theADgenetics
is a complex one. The performance of the proposed method
may be significantly improved by applying hybrid techniques
of Bayesian network with genetic algorithm GA or particle
swarmoptimization PSO to increase the search efficiency and
determine an accurate network. Another machine learning
techniques likemultifactor dimensionality reduction (MDR),
tree based algorithms, or RelifeF filtering may be used
to detect associations between SNPs and AD in a higher
accuracy, through investigating multiple interactions among
SNPs in a case-control study. Finally, using the whole genome
sequencing data, not only the top related genes, or adding
other modalities like MRI, PET, or CSF biomarkers may
significantly improve the prediction accuracy.

4. Conclusion

Prediction of complex disease phenotypes from high-
throughput genotype data is an emerging research goal.
Gene-SNP connectivity and its association with AD can
provide critical insights into the underlying mechanisms and
identify SNPs that may serve as effective targets for therapeu-
tic intervention. Here we have introduced a framework for
the use of four different Bayesian network methods on whole
genome sequencing datasets to establish causal relationships
among genes and between genes and Alzheimer’s disease.

In conclusion, we identified several significant poly-
morphisms associated with AD, in the APOE, CR1, CD33,
CLU, PICALM, and ABCA7 genes. Some of them were
previously identified whereas others were novel biomarkers.
These results demonstrated the effectiveness of using BN for
identifying AD causal SNPs with acceptable accuracy. We
hope that our work will facilitate reliable identification of
SNPs that are involved in the etiology of Alzheimer’s diseases,
ultimately supporting timely identification of genomic dis-
ease biomarkers, and development of personalized medicine
approaches and targeted drug discoveries.
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[10] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection
techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp.
2507–2517, 2007.

[11] T.-T. Nguyen, J. Huang, Q.Wu, T. Nguyen, andM. Li, “Genome-
wide association data classification and SNPs selection using
two-stage quality-based Random Forests,” BMC Genomics, vol.
16, supplement 2, article S5, 2015.

[12] M. E. Stokes, M. M. Barmada, M. I. Kamboh, and S.
Visweswaran, “The application of network label propagation
to rank biomarkers in genome-wide Alzheimer’s data,” BMC
Genomics, vol. 15, article 282, 2014.

[13] A. Cedazo-Minguez and B. Winblad, “Biomarkers for
Alzheimer’s disease and other forms of dementia: clinical needs,
limitations and future aspects,” Experimental Gerontology, vol.
45, no. 1, pp. 5–14, 2010.

[14] S. Ray, M. Britschgi, C. Herbert et al., “Classification and pre-
diction of clinical Alzheimer’s diagnosis based on plasma sig-
naling proteins,” Nature Medicine, vol. 13, no. 11, pp. 1359–1362,
2007.

[15] G. B. Frisoni, “Structural imaging in the clinical diagnosis of
Alzheimer’s disease: problems and tools,” Journal of Neurology
Neurosurgery and Psychiatry, vol. 70, no. 6, pp. 711–718, 2001.

[16] H.Wang, F. Nie, H. Huang et al., “From phenotype to genotype:
an association study of longitudinal phenotypic markers to
Alzheimer’s disease relevant SNPs,” Bioinformatics, vol. 28, no.
18, pp. i619–i625, 2012.

[17] D. Zhang, Y.Wang, L. Zhou,H. Yuan, andD. Shen, “Multimodal
classification of Alzheimer’s disease and mild cognitive impair-
ment,” NeuroImage, vol. 55, no. 3, pp. 856–867, 2011.

[18] J. Young, M. Modat, M. J. Cardoso, A. Mendelson, D. Cash, and
S. Ourselin, “Accurate multimodal probabilistic prediction of
conversion to Alzheimer’s disease in patients with mild cogni-
tive impairment,”NeuroImage: Clinical, vol. 2, no. 1, pp. 735–745,
2013.

[19] M. C. Carrillo, L. J. Bain, G. B. Frisoni, and M. W.
Weiner, “Worldwide Alzheimer’s disease neuroimaging initia-
tive,” Alzheimer’s and Dementia, vol. 8, no. 4, pp. 337–342, 2012.

[20] L. Bertram, M. B. McQueen, K. Mullin, D. Blacker, and R. E.
Tanzi, “Systematic meta-analyses of Alzheimer disease genetic
association studies: the AlzGene database,”Nature Genetics, vol.
39, no. 1, pp. 17–23, 2007.

[21] C. E. Schlosberg, T.-H. Schwantes-An, W. Duan, and N. L.
Saccone, “Application of Bayesian network structure learning
to identify causal variant SNPs from resequencing data,” BMC
Proceedings, vol. 5, supplement 9, article S109, 2011.

[22] P. Olgiati, A.M. Politis, G. N. Papadimitriou, D. De Ronchi, and
A. Serretti, “Genetics of late-onset Alzheimer’s disease: update
from the Alzgene database and analysis of shared pathways,”
International Journal of Alzheimer’s Disease, vol. 2011, Article ID
832379, 14 pages, 2011.



8 Advances in Bioinformatics

[23] S. L. Rosenthal and M. I. Kamboh, “Late-onset Alzheimer’s
disease genes and the potentially implicated pathways,” Current
Genetic Medicine Reports, vol. 2, no. 2, pp. 85–101, 2014.

[24] S. Purcell, “PLINK-1.07,” http://pngu.mgh.harvard.edu/∼
purcell/plink/.

[25] S. N. B. Purcell, K. Todd-Brown, L.Thomas et al., “PLINK: a tool
set for whole-genome association and population-based linkage
analyses,”American Journal ofHumanGenetics, vol. 81, no. 3, pp.
559–575, 2007.

[26] E. N. Richard, Learning Bayesian Networks, Prentice Hall, 2003.
[27] F. V. Jensen and T. D. Nielsen, Bayesian Networks and Decision

Graphs, Information Science and Statistics, Springer, Berlin,
Germany, 2007.

[28] N. Zhou and L. Wang, “Effective selection of informative
SNPs and classification on the HapMap genotype data,” BMC
Bioinformatics, vol. 8, article 484, 2007.

[29] http://www.bayesia.com.
[30] N. Friedman, D. Geiger, andM.Goldszmidt, “Bayesian network

classifiers,”Machine Learning, vol. 29, no. 2-3, pp. 131–163, 1997.
[31] H.-W. Chang, L.-Y. Chuang, C.-H. Ho, P.-L. Chang, and C.-H.

Yang, “Odds ratio-based genetic algorithms for generating SNP
barcodes of genotypes to predict disease susceptibility,”OMICS:
A Journal of Integrative Biology, vol. 12, no. 1, pp. 71–81, 2008.

[32] T. Richardson, “Markov properties for acyclic directed mixed
graphs,” Scandinavian Journal of Statistics, vol. 30, no. 1, pp. 145–
157, 2003.

[33] C. B. Do and S. Batzoglou, “What is the expectation maximiza-
tion algorithm?” Nature Biotechnology, vol. 26, no. 8, pp. 897–
899, 2008.


